
 5th International Ege Energy Symposium and Exhibition (IEESE-5) 
27-30 June 2010 

Pamukkale University, Denizli, Turkey 
 

Application Of The Adomian Decomposition 
Method To The One Group Neutron Diffusion 

Equation 
Şükran Çavdar 

cavdar@itu.edu.tr / Energy Institute / Istanbul Technical University 

 
 

I. INTRODUCTION 

There is a vast amount of literature on mathematical 
methods for solving differential equations that have linear 
or nonlinear, ordinary or partial nature. However, in order 
to apply these methods to problems arising in science and 
engineering [1-18], usually it is inevitable to make modifi-
cations to the original problem to have a certain form re-
quired by the particular method. Moreover, in most cases, 
numerical results require a high amount of computational 
power. The Adomian Decomposition Method (ADM), 
proposed by Adomian [1-14], has been proved useful in 
obtaining solutions for many such problems involving 
algebraic, linear/non-linear, ordinary/partial differential 
equations, integro-differential, integral or differential de-
lay equations while making it possible to avoid lineariza-
tions and modifications to the original problem which 
could correspond to unrealistic assumptions to hold. The 
solution is obtained in a series form in which the terms are 
computed in an iterative manner. A partial sum corre-
sponds to an approximate solution and through numerical 
evaluation of the terms, a numerical approximation to the 
solution is obtained. It is often the case that the series ex-
hibit rapid convergence, the computational schemes that 
arise are relatively convenient that avoid complicated al-
gebraic manipulations and numerical evaluation of them 
yield relatively efficient results with high accuracy [12], 
[14]. In a recent work, we have applied the ADM to fixed 

source neutron diffusion equations and achieved the ana-
lytic result provided by the traditional methods [18] recur-
sively in a straightforward manner. In this work, we con-
sider a multiplying media scenario for a two dimensional-
one group system and exploit the aforementioned merits of 
the ADM for the solution of neutron diffusion equation 
considering a one group problem. 

II. THE ADM FOR SOLVING DIFFERENTIAL EQUATIONS 

The ADM relies on the fact that it is possible to decom-
pose the solution of equations involving linear and/or non-
linear operators Fi  given by 
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as the solution [1] in series form as 
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where the corresponding n-term partial sum is given by 
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We note that 
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and the convergence is rapid [12], [14]. Moreover, the n-
term partial sum is an approximate solution. Hence, the 
computation of the solution is equivalent to the computa-
tion of ( )

i
u x
�

 for i=0, 1, 2, ....n-1. ADM proposes a recur-

sive formula for finding these terms, starting with a de-
composition of the general differential operator F that 
represents a general nonlinear ordinary differential opera-
tor that bears both linear and nonlinear terms as 

= + +F L R N  (5) 

where L+R and N are the linear and non-linear parts re-
spectively. Here, L is the highest order derivative part 
which is invertible and R is the remaining part of the linear 
operator. Thefore (1) can be written as 

+ + =Lu Ru Nu g  (6) 

Solving this equation for Lu yields 

= − −Lu g Ru Nu  (7) 

Since L  is invertible, after multipliying both sides of 

the equation with 1−
L , we end up with 

1 1 1 1− − − −
= − −L Lu L g L Ru L Nu  (8) 

If the original problem given by (1) is an intitial-value 

problem, it is possible to treat the integral operator 1−
L as 

definite integrations from 0 to x. If L  is a second order 

operator, 1−
L

 

is a two-fold integration operator and 
1 '(0) (0)−

= − −L Lu u u xu . For boundary value problems, 
indefinite integrations are used and the constants are 
evaluated from the given conditions which is a valid ap-
proach for the initial-value case too. 

Considering (8), the solution of the original problem is 
given by 

1 1 1( ) − − −
= + + − −u x A Bx L g L Ru L Nu  (9) 

where A and B are integration constants that can be found 
from boundary or initial conditions. After substituting (2) 
in (9),  the nonlinear term Nu is obtained as 
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where Ai are polynomials given by 
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and referred to as Adomian polynomials [6]. After arrang-
ing the terms, the ADM obtains the solution as 
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in a recursive form consequently (the interested reader is 
referred to [6], [11] for further details) . As the ADM sug-
gests the above steps to obtain a solution for a general dif-
ferential equation, in the case of partial differential opera-
tors, the above steps are valid for each one and a corre-
sponding solution can be obtained. Such a solution is 
known as a partial solution, e.g. x-partial solution and y-
partial solution in the case of a two dimensional problem 
involving independent variables x and y respectively [7]. 

Consider a boundary condition problem involving more 
than one independent variables. The partial solutions ob-
tained for the separate equations for the highest-order lin-
ear operator terms are identical for the case in which the 
boundary conditions are general and asymptotically equal 
when the boundary conditions in one independent variable 
are independent of other variables. For the case, each 
equation is solved for an-n-term approximation, i.e. n-term 
partial sum, and then the partial solutions are combined 
yielding the solution of concern [7]. 

In cases where one operator annihilates the series in a 
finite number of terms, at least one partial solution may 
not satisfy the corresponding conditions.  In order to pro-
ceed with the ADM, the initial condition should be ex-
pressed in an appropriate series expansion form without 
making a priori assumptions about the solution [8]. 

Since the method does not resort to linearization or as-
sumption of weak nonlinearity, the solution generated is in 
general relatively realistic in the sense that the fidelity to 
the model of the physical problem is preserved. 

III. APPLICATION TO THE ONE GROUP NEUTRON DIFFUSION 

EQUATIONS 

We consider the time independent neutron diffusion 
equation for a homogenous region in a scenario where a 
geometry with the vacuum boundary conditions are valid: 

( ) ( )2 2 S(r )
r r ,     r V

D
φ κ φ∇ − = − ∈
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 (15) 
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Here, ( )rφ
�

 and ( )S r
�

 are the neutron flux and the neutron 

source term respectively. Σ a

 

is given in terms of the ab-

sorption cross section and the diffusion constant D by in-

verse diffusion length 2 /κ Σ= a D . Note that, in one 
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group criticality eigenvalue problems, the fission source 
term is /f effS DkνΣ=  

We consider a two dimensional system with a square 
geometry. The system is symmetric with respect to both  x 
and y axes and so it is sufficient to obtain a solution for 
only a single quadrant, for the case, using the ADM. In 
this scenario, the neutron diffusion equation together with 
the boundary conditions given by (14) reduces to 

( ) ( )
( ) ( )
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After rewriting the above using an operator notation we 
obtain a similar form with that of (1) : 

( )[ ], 0φ =F x y  (17) 
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Since (16) involves partial differential operators, ADM 
recursions are carried out for each of the independent vari-
ables yielding the x-partial solution and y-partial solution. 
Due to the boundary conditions [8], one subtlety here is 
that, due to these boundary conditions the x-partial solu-
tion of our equation will be same with y-partial solution. 
Hence, we consider the x partial solution and continue on 
for the recursion. After arrangements for collecting terms 
with the operator Lx on one side, we multiply the equality 
with inverse operator of Lx. 

1 1 2( , ) [ ( , ) ( , )]φ χ φ φ− −
= −

x x x y
L LL x y x y L x y  (21) 

1 2( , ) ( ) ( ) [ ( , ) ( , )]φ χ φ φ−= + + −
x y

x y A y x B y L x y L x y  (22) 

This yields the equation as seen where A(y) and B(y) 
terms are integral constants depending on the boundary 
conditions. The ADM recursion is as follows: 0φ  is com-

posed of integral constants and the forcing term given by 

0 ( , ) ( ) ( )φ = +x y A y x B y  (23) 

If we apply first boundary conditions to 0φ  at x=0, we 

find out that A(y)=0  for all y.  Then we continue with the 
ADM recursions as follows; 
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Now we will deal with the second term due to boundary 
conditions, i.e.  B(y), and the forcing term.  For this prob-
lem we have the case in which one operator annihilates in 
a finite number of steps as discussed in Section 2. Hence, 
straightforward application of ADM recursions lead both 
B(y) disappear even in the first step of the iteration that 
computes 1φ . This is the second subtlety. Here, in order to 

prevent loosing the contribution of these terms we repre-
sent both the integral constant B(y) and the forcing term 
with series expansions [8]. Note that this procedure re-
quires no a priori assumptions on the solution. (Further-
more, in the case of a fission source, the series representa-
tion of the forcing term will be that of the source function.) 
For our fixed source case, we find out this form for beta m 
and f m through solving for the boundary conditions  as in 
the following; 

n n

n 0

B(y) b Cos( y)β
∞

=

=∑  

Considering the type of the one group neutron diffusion 
equation and the boundary conditions, we consider an ini-
tial guess in the form. Then the first term of the series is 
given by

  
( )o n n

n 0

x, y b Cos( y)φ β
∞

=

=∑  (25) 

In order to have the presumption in (25) satisfy the 
boundary conditions, we substitute the condition for y = a 
yielding that 

nβ  satisfies 
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0,1, 2, ....

2
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n

a

π
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On the other hand, consider a few terms of the series 
given by 
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where 
2 2 2α χ β= −
n n

 

Consider the partial sum of a few terms of the series 
given by  
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Applying (28) boundary condition at x=a, 
n

α is obtained 

(2 1)
0,1, 2,....

2

π
α

+
= =

n

n
n

a
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For a critical reactor, all the harmonics drop out and the 
fundamental eigenvalue is needed [19]-[21]. Under this 
condition, fundamental eigenvalue and eigenfunction 
given by  

0
2a

π
α =

�
 (30) 

( ) ( )0 0 0x, y b Cos y Cos( x)φ β α=  

and multiplication factor keff using (20), (26) and (30) 
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is obtained. But, coefficient b0 is not determined yet.  

In nuclear reactors, reactor power is determined follow-
ing equation [21] 
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IV. EXAMPLE 

In this example, we consider a square reactor core with 
one edge length 2a = 100 cm and apply ADM for one 
quadrant of the system due to symmetricity. Notice the 

vacuum conditions at the left and upper boundary and re-
flector conditions at the right and lower boundary ex-
pressed in (16). The constants of reactor are presented in 
Table 1. 

For the case, we assume the result obtained via the sepa-
ration of variables as the exact solution. Computations 
utilizing Mathematica yield that ADM achieves this result 
as well. We present the computational results of ADM on 
a 100x100 grid in Figure 1 and on y=0 in Figure 2. In ad-
dition, in Table 2, we present the computational results of 
ADM, SoV in a comparative manner. 

Table 1 –  Reactor constants. 

Constant Value 

a  (cm) 50 

D  (cm) 1.77764 

aΣ  (cm-1)
 

0.0143676 

fνΣ  (cm-1)
 

0.0262173 

fΣ  (cm-1)
 

0.0104869 

P  (watt.cm-1)
 

32000 

fw  (joule) 3.2042x10-11 

Table 2 –  Compared results. 

 ADM SoV 

keff 1.46657782 1.46657782 

φ0 2.34976x1013 2.34976x1013 

 

 
Figure 1 – Neutron flux distribution. 
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Figure 2 – Neutron flux for y=0. 
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V. CONCLUSION 

We have considered two dimensional one group neutron 
diffusion equations for multiplying media and through the 
Adomian Decomposition Method we have obtained an 
iterative scheme for a series expansion of the solution. The 
iterations admit a symbolic program that outputs the solu-
tion as the partial sum of desired number of terms. It is 
also possible to perform numerical evaluation of the solu-
tion with a desired bit resolution. Also considering the fact 
that the closed form solution obtained through separation 
of variables is in a series expansion form, this approach 
provides an effective solution which also exhibits conven-
ient numerical properties. 

We calculate the eigenvalues, eigenfunctions and the 
largest eigenvalue named the multiplication factor keff . 
The computational results indicate that ADM coverges to 
the solution which the series sum provided by the widely 
used analytic method of SoV converges. This is in parallel 
with the behaviour of ADM for fixed source neutron diffu-
sion equations. In this case, ADM yields a simple recur-
sion with a competetive accuracy [18]. Similarly, we have 
obtained a straightforward solution for the case which pro-
vides motivation for exploiting ADM in a multiregion 
and/or multigroup scenario in which there are distinct dif-
fusion constants inhibiting to achieve a solution through 
conventional approaches. A further investigation along 
these lines remains as future work. 
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